Faculty of Engineering – Shoubra Department: **Electrical Eng.**

Semester: Fall 2013

Total Grade: 20

Mid Term Exam solution

Course: ECE 111:

Electronic Engineering Fundamentals

Instructor: Dr. Abdallah Hammad

Number of questions: 4 - Time allowed: 90 Min

Answer all questions: write each question number and part number ahead of your answer

 $K=1.38\times10^{-23} \text{ J/K}$

 $h=6.64\times10^{-34} \text{ J.s}$

 $q=1.6\times10^{-19}$ C

 $m_0 = 9.1 \times 10^{-31} \text{ Kg}$

(1) A semiconductor has the energy band diagram shown in figure 1-a. Assume that the density of states in the conduction band is represented by figure 1-b. Calculate the free electrons concentration. (T = 300 K)

$$n = \int_{Ec}^{\infty} F(E)N(E)dE$$

$$n = \int_{Ec}^{\infty} \frac{1}{1 + e^{\frac{E - E_F}{KT}}} 2.5 \times 10^{20} dE$$

$$n = \int_{Ec}^{\infty} e^{-\frac{E - E_F}{KT}} 2.5 \times 10^{20} dE$$

$$n = \int_{Ec}^{\infty} e^{-\frac{E - E_F}{KT}} 2.5 \times 10^{20} dE$$

$$n = 2.5 \times 10^{20} \int_{Ec}^{\infty} e^{-\frac{E - E_F}{KT}} dE$$

$$n = -2.5 \times 10^{20} KT \left[e^{-\frac{E - E_F}{KT}} \right]_{E_c}^{\infty} = 2.5 \times 10^{20} KT \left[e^{-\frac{E - E_F}{KT}} \right]_{\infty}^{E_c}$$

$$n = 2.5 \times 10^{20} KTe^{-\frac{E_c - E_F}{KT}} = 2.5 \times 10^{20} \times 0.026 \times e^{-\frac{0.08}{0.026}} = 2.99 \times 10^{17} \text{ cm}^{-3}$$

- (2) A Si sample in figure 2 is doped with $2x10^{17}$ cm⁻³ donors. (Given: μ_n =1350 cm²/V.s, μ_p = 400 cm²/V.s n_i =1.5x 10^{10} cm⁻³, T = 300 K, L = 0.5 cm, d = 0.6 mm, W = 0.4mm and V= 1V). Calculate:
 - a) The drift velocity of electrons
 - b) The total drift current
 - c) The resistance of the bar.

(3) A bar of silicon of length 0.5×10^{-3} cm is illuminated at one end creating $\Delta n = \Delta p = 10^{13}$ cm⁻³ excess electrons and holes. If the diffusion length L_p for the minority holes is 5×10^{-3} cm and if all the excess electrons and holes recombine at the other end of the bar. Calculate and plot the steady-state excess

Figure 3

minority hole distribution $\delta p(x)$ as function of the distance along the bar.

(Hint Use the approximation, $e^y = 1+y$, for y $\ll 1$)

(4)

a- Drive an expression for the mobility of carriers in semiconductor.

b- The hole concentration in a semiconductor specimen is shown in figure (4).

Find an expression and plot the hole current density Jp(x) for the case in which, there is no externally applied electric field.

Good Luck